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Mid2p stabilizes septin rings during cytokinesis

in fission yeast
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role in cytokinesis. In the fission yeast Schizosaccharo-

myces pombe, septin rings appear to be involved
primarily in cell-cell separation, a late stage in cytokinesis.
Here, we identified a protein Mid2p on the basis of its
sequence similarity to S. pombe Mid1p, Saccharomyces
cerevisiae Bud4p, and Candida albicans Int1p. Like septin
mutants, mid2A mutants had delays in cell-cell separation.
mid2A mutants were defective in septin organization but
not contractile ring closure or septum formation. In wild-
type cells, septins assembled first during mitosis in a single
ring and during septation developed into double rings that

Septins are filament-forming proteins with a conserved

did not contract. In mid2A cells, septins initially assembled
in a single ring but during septation appeared in the cleavage
furrow, forming a washer or disc structure. FRAP studies
showed that septins are stable in wild-type cells but exchange
30-fold more rapidly in mid2A cells. Mid2p colocalized
with septins and required septins for its localization. A
COOH-terminal pleckstrin homology domain of Mid2p was
required for its localization and function. No genetic inter-
actions were found between mid2 and the related gene mid1.
Thus, these studies identify a new factor responsible for the
proper stability and function of septins during cytokinesis.

Introduction

Septins are a class of GTPase proteins with functions in
cytokinesis conserved from yeast to mammalian cells (Longtine
et al., 1996; Field and Kellogg, 1999; Kartmann and Roth,
2001). Septin proteins were first identified in budding yeast
where they are localized to rings at the bud neck. The ability
of septins to form filaments in vitro and their association
with filament-like structures at the bud neck in electron
micrographs have led to the proposal that they constitute
bud neck filaments (Byers and Goetsch, 1976; Longtine et
al., 1996, 1998; Frazier et al., 1998). In budding yeast, septins
are required for cytokinesis and are thought also to function
as a scaffold for the localization of many signaling proteins,
cell cycle regulators, bud site selection proteins, and chitin
synthases (Chant, 1996; Longtine et al., 1996; Field and
Kellogg, 1999; Gladfelter et al., 2001). The identification of
septins in other organisms revealed that their role in cyto-
kinesis is conserved. For example, a Drosophila septin, Pnut,
is localized to the cleavage furrow and is required for cyto-
kinesis of certain cell types (Neufeld and Rubin, 1994;
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Adam et al., 2000). Recent studies on many other septins
have uncovered a diversity of functions, including sporulation,
association with secretory proteins, and association with
stress fibers in nondividing cells (Kartmann and Roth,
2001). Although a number of septin-interacting proteins
have been identified, most of these are thought to use septins
as a scaffold for localization and proper function. Sdill little is
known about what proteins may help assemble and organize
the septins themselves in the cell.

In the fission yeast Schizosaccharomyces pombe, cytokinesis
proceeds in multiple phases: in early mitosis (preanaphase), a
single contractile ring, consisting of actin, myosin, and other
proteins, is assembled and persists through anaphase (~20-
30 min). At the end of anaphase, septation is triggered by
the Sin/Sid pathway of cell cycle regulators (McCollum and
Gould, 2001). During this process, the contractile ring begins
to close, acting to guide the closure of the plasma membrane
behind it. At the same time, the cell wall of the septum is
synthesized outside the plasma membrane. Upon completion
of the cell wall and after the cell membranes are closed, cell—cell
separation occurs by the digestion of the primary septum. In
S. pombe, seven septins have been identified, four of which
are localized to the division plane and three of which are
involved in sporulation in meiotic cells (J. Pringle, personal
communication). S. pombe septin (spn) mutants are viable
but have a defect in cell-cell separation and accumulate in
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chains of cells (Longtine et al., 1996) (J. Pringle, personal
communication). Consistent with this phenotype, septins
appear at the division site only after the contractile ring has
been fully assembled. Thus, in contrast to septins in budding
yeast, fission yeast septins are not essential for cell viability
and may function primarily in late stages of cytokinesis.

Here, we identify a gene that functions in septin organiza-
tion. Mid2p was identified on the basis of its homology to
Mid1p, a protein required for proper positioning of the con-
tractile ring during cytokinesis (Sohrmann et al., 1996;
Bahler et al., 1998a; Paoletti and Chang, 2000). The Mid2p
sequence also shares similarity with Bud4p, a septin-associ-
ated protein required for bud site selection in S. cerevisiae
(Sanders and Herskowitz, 1996), and Candida albicans Intl,
a protein required for hyphal growth, adhesion, and patho-
genesis (Gale et al., 1996, 1998). Our analysis showed that
Mid2p associates with and organizes the septin rings. Time-
lapse and FRAP analysis of 74d2A mutant cells revealed that
Mid2p has a specific role in maintaining the integrity and
stability of the septin rings during cleavage.

Results
mid2A mutants have a defect in cell-cell separation
Mid2p was identified in a BLAST search of the S. pombe ge-
nome databases (Sanger Centre, Cambridge, UK) on the basis
of its significant amino acid similarity to S. pombe Midlp
(19% identical residues, 37% similar, expect value 2¢™%)
(Altschul et al., 1990; Sohrmann et al., 1996; Tatusova and
Madden, 1999). Mid2p also possess significant homology to
S. cerevisiae Bud4p (20% identical, 38% similar, expect value
7¢ ), and C. albicans Intlp (25% identical, 47% similar in
the COOH-terminal 336 aa, expect value 4e ) (Gale et al.,
1996; Sanders and Herskowitz, 1996). All of these proteins
possess a pleckstrin homology (PH)* domain at their very
COOH terminus and share similarity in an adjacent region at
the COOH terminus (Fig. 1). Mid1p and Bud4p also share
homology through the entire length of Mid2p.

mid2A deletion strains were generated using a PCR-based
homologous recombination gene-targeting system (Bahler

*Abbreviations used in this paper: DIC, differential interference contrast;
PH, pleckstrin homology.

et al., 1998b). Heterozygous deletions were initially gener-
ated in diploid strains, and sporulation of these diploids
yielded viable m:id2A haploid colonies. mid2A cells grew at
wild-type rates both on plates and in liquid cultures, at a
range in temperatures (20-36°C), and at high salt (1 M
KCl) conditions.
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Figure 2. mid2A and spn4A cells have similar cell-cell separation
defects. (A) DIC images of representative wild-type (FC937), mid2A
(FC881), and spn4A (FC867) mutant cells grown in rich medium at

30°C to the exponential phase of growth. (B) Numbers of septa in wild-
type, mid24, and spn4A cells (n > 400). Bar, 10 um.
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Microscopic examination of mid2A cells revealed a signifi-
cant defect in cell—cell separation in cytokinesis (Fig. 2 A).
When grown in rich liquid medium, 16% of asynchronous
wild-type cells exhibited a septum, whereas 66% of mid2A
cells possessed one septum (Fig. 2 B). A small percentage
(<5% of cells) had two or three septa (grown in rich medium
in exponential phase) and grew in short chains of cells. No
cells were seen with more than three septa. Careful micro-
scopic examination of the septa in multiple focal planes using
differendal interference contrast (DIC) or calcofluor staining
suggested that most of the septa were complete. Chains of cells
occasionally contained a cell that had lysed, suggesting that
these mutants had rare defects in cellular integrity and that
cells in each chain were completely separated by membrane
and septum. Robust growth rates suggest that these mutants
do not have a significant delay in progression of the nuclear
cell cycle but have a specific delay of approximately one gener-
ation time in digestion of the septum for cell-cell separation.

mid2A mutant cells exhibit normal contractile rings

Since mild defects in actin-myosin contractile ring organiza-
tion can lead to cell-cell separation defects (unpublished
data), we tested whether Mid2p is involved in the assembly or
contraction of the actin ring during cytokinesis. mid2A cells
stained for F-actin with Alexa Fluor phalloidin exhibited well-
defined, normal actin rings (unpublished data). Using a
Cdc4p (a myosin light chain) fusion to GFP (McCollum et

Septins and Mid2p in cytokinesis | Berlin ecal. 1085

al., 1995; Balasubramanian et al., 1997), we examined if the
contraction of the actin-myosin ring might be perturbed.
Confocal three-dimensional time-lapse images showed that
wild-type Cdc4p-GFP rings contracted at the end of mitosis
with a rate of 0.20 £ 0.017 wm/min (z = 5), consistent with
previous reports (Bezanilla et al., 2000; Motegi et al., 2000;
Pelham and Chang, 2002). In mid2A cells, Cdc4p-GFP rings
appeared normal and contracted at rates similar to those of
wild-type rings, 0.17 % 0.048 pm/min (» = 5; P > 0.1) (Fig.
3). Therefore, neither the assembly nor the closure of the con-
tractile ring was markedly perturbed in mid2A mutants.

mid2A mutant cells have defects in organization

of septin rings

The phenotype of mid2A cells was similar to the cell—cell
separation phenotype described for S. pombe septin mutants
(Longtine et al., 1996) (J. Pringle, personal communica-
tion). Thus, we compared the mid2A mutant to a spn4A
(septin 4) mutant. The spn4A mutant appears to have a sep-
tin “null” phenotype, since it has a very similar phenotype to
that of cells deleted for all the mitotic septins and exhibits no
detectable localization of the other mitotic septins (J. Prin-
gle, personal communication). As expected, spn4A cells ex-
hibited cell-cell separation defects and accumulated cells
with one or more septa (Fig. 2 A). The numbers of septa in
spndA cells were very similar to those found in mid2A cells
(Fig. 2 B). spn4A mid2A double mutant cells showed a simi-
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Figure 3. The contractile ring appears to assemble and close normally in mid2A cells. (a) Wild-type and mid2A cells expressing cdc4-GFP
were imaged live using confocal time-lapse microscopy. Z-stacks were rendered in three dimensions to produce a cross-sectional view of the
ring. Bar, 2 um. (B) Measurements of five individual ring diameters over time in wild-type and mid2A cells.
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Figure 4. Organization of septin rings is not maintained in mid2A
cells. (A) Wild-type (FC937) and mid2A (FC881) cells expressing
Spn4p-GFP were imaged for GFP fluorescence using confocal three-
dimensional time-lapse microscopy. Spn4p-GFP structures were
rendered in three dimensions at each time point. Side (0°) and cross-
sectional (90°) views of the Spn4p-GFP medial structures are shown
in wild-type (left) and mid2A (right) at representative time points.
Note that in mid2A cells, Spn4p-GFP forms a single ring (0 min), an
abnormal washer (3—13 min), and then a disc structure (24 min).
Bar, 2 pm. (B) mid2A cells expressing Spn4p-YFP (green) and the
contractile ring marker Cdc12-CFP (red) were imaged on a wide
field microscope and rendered in three dimensions. Spn4p-YFP is
present on the membrane behind the contractile ring in a washer
structure. (C) Summary of the distribution of septins in wild-type and
mid2A cells during contractile ring closure.

lar phenotype, suggesting that these proteins act in the same
pathway (unpublished data).

Because of this similarity in phenotypes, we tested whether
mid2A cells may have defects in septin organization. We ex-
amined septin distribution in living wild-type and mid2A
cells expressing a Spn4p-GFP fusion construct using time-

lapse confocal microscopy. In wild-type cells, septins first ap-
peared in anaphase as a collection of medial dots that were
then incorporated into a single medial ring around the cir-
cumference of the cell (Fig. 4 A). This single ring then
changed into a double ring structure that persisted through-
out septation. At the end of septation, septins were present
in discrete dots at the new cell ends. During interphase, cells
sometimes exhibited small septin dots at the cell ends and
also occasionally contained a single bright cytoplasmic mo-
tile dot or small ring shaped particle (unpublished data).

In mid2A cells, septin distribution was abnormal. As in
wild-type cells, inidally Spn4p-GFP localized to a single ring
during anaphase (Fig. 4 A). However, at septation the septins
did not stay only at the cell perimeter as double rings. Instead,
they gradually appeared at the cleavage furrow in the interior of
the cell, forming a double washer and then a double disc struc-
ture. The rate of invagination in the furrow was 0.16 pm/min,
the same rate as the rate of contraction of the contractile ring.
Dual labeling of Spn4p-YFP and a contractile ring marker
Cdc12p-CFP confirmed that the septins were present in the
cleavage furrow behind the actomyosin ring (Fig. 4, B and C).
In addition, during septation spn4-GFP was also slightly more
spread out on the cell surface (Fig. 4 A). mid2A cells fixed and
stained with anti-Spn4p antibody showed a similar abnormal
septin distribution, although the fine structures were not well
preserved in fixation (unpublished data). These results sug-
gested that Mid2p has a specific role in maintaining the orga-
nization of septin rings during ring contraction.

Mid2p affects septin dynamics

This abnormal localization of Spn4p-GFP in mid2A cells
suggested that septins may be flowing from the septin rings
into the cleavage furrow during ring closure. Alternatively,
new septin proteins may be deposited at the membrane in
the furrow during this process. To distinguish between these
two possibilities, we investigated the dynamics of septin pro-
teins using FRAP. Portions of Spndp-GFP rings were pho-
tobleached, and the rates of recovery of Spn4p-GFP fluores-
cence were assayed. In mid2" cells, Spndp-GFP in well
established septin rings recovered relatively slowly with
tiz = 350 * 136 s (range 168-532 s; n = 7) (Fig. 5; see
Materials and methods), showing that Spndp is relatively
stable. In contrast, in mid2A cells Spn4p-GFP fluorescence
recovered over 30-fold more rapidly, with ¢;, = 10 * 4 s
(range 5-17 s; n = 6) (Fig. 5) showing that Spn4p is rapidly
exchanging in the ring. Similar FRAP rates were observed in
mid2A cells at all different stages of cleavage (» = 18), show-
ing that this large difference between wild-type and mid2A
cells was not due to cell cycle stage differences between the
dartasets. Since the rate of septin exchange is much faster
than the rate of invagination, these dynamics show that
Spn4p proteins in mid2A cells are not flowing in from the
rings at the cell surface into the furrow but may be rapidly
binding and exchanging with the invaginating membrane.
Thus, Mid2p is required to stabilize septins.

Mid2p colocalizes with septins and is dependent on
septins for localization

Next, we tested whether Mid2p colocalizes with septins. We
examined the localization of functional Mid2p-GFP or
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Figure 5. Measurement of Spn4p-GFP dynamics using FRAP.
(A) Wild-type and mid2A cells expressing Spn4p-GFP were photo-
bleached in the zones marked by white rectangles. Recovery of
fluorescence intensity was assayed over time (as described in Materials
and methods). Representative images are shown. Top panels show
cells just before photobleaching. 0 s represents time immediately
after photobleaching. (B) Graph of mean t,,, = SD of Spn4p-GFP
fluorescence recovery in seconds.
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mid2p-YFP spndp-CFP merged

Figure 6. Mid2p colocalizes with Spn4p. Cells (FC882) expressing
Mid2p-YFP (green) and Spn4p-CFP (red) were imaged for YFP and
CFP fluorescence. (Top) Cells in late mitosis just after initial assembly
of the single septin ring. Some of these cells exhibit septin but not
Mid2p staining (left cell). (Middle) Cells during septation with double
septin rings. (Bottom) Cells during cell-cell separation and during
interphase. Bar, 10 pm.

Mid2p-YFP fusions expressed from the chromosomal en-
dogenous mid2" promoter. Using dual labeling with Mid2p-
YFP and Spn4p-CFP constructs, we found that Mid2p and
Spn4p colocalized precisely in single and double rings dur-
ing mitosis (Fig. 6). The two proteins colocalized even dur-
ing interphase when they were sometimes localized in dots at
the cell tip or in a single large cytoplasmic dot. 20% of mi-
totic or septating cells (# = 176) had Spn4p-CFP present in
a single ring but had no detectable Mid2p-YFP (Fig. 6, top).
No cells were found with Mid2p-YFP present but Spn4p-
CFP absent. Since the cells exhibiting rings of Spn4p with-
out Mid2p were in the initial stages of septin ring localiza-
tion, these results show that Spn4p may precede Mid2p
localization at the septin ring.

We also tested the dependence of Mid2p localization on
septins. In spn4A cells, Mid2p-GFP was not localized to any
specific structure (Fig. 7 A). Western blot showed that
Mid2p-GFP was still expressed in spndA cells (unpublished
data). As described above, septins initially localize normally
in mid2A cells. Thus, both the order of localization and lo-
calization dependence results suggest that septins first form a
single medial ring and that Mid2p associates with the septin
ring slightly later in the cell cycle.

The Mid2p PH domain is required for Mid2p function
and localization

We tested the function of the conserved COOH-terminal
PH domain of Mid2p. mid2 PHA and mid2 PHA-YFP mu-
tants were generated by introducing a kanMX or YFP-
kanMX cassette into the mid2" coding region to produce a
COOH-terminal truncation. mid2 PHA cells had the same
cell-cell separation phenotype as mid2A mutants (Fig. 7 B).
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Figure 7. Mid2p localization is dependent on septins and the Mid2p
PH domain. (A) spn4A cells (FC492) expressing Mid2p-GFP were
imaged for GFP fluorescence. Only background fluorescence is
observed. (B) Cells expressing only Mid2p-PHA were imaged by
DIC microscopy. (C) mid2-YFP and mid2-PHA-YFP cells were
imaged for YFP fluorescence. Only background fluorescence is
observed in the mid2-PHA-YFP cells. Bar, 10 pm.

mid2 PHA-YFP cells exhibited only diffuse YFP fluores-
cence, showing that this truncated protein was not localized
properly (Fig. 7 C). Western blotting confirmed that the
Mid2p-PHA—GFP protein was still expressed (unpublished
data). Similar results were found with a mid2 PHA-HA
strain where the mutant was tagged with a HA epitope tag
(unpublished data). Thus, the PH domain is required for
Mid2p function and localization.

mid2" does not share overlapping functions with mid7*
Since Mid2p and Midlp share significant amino acid simi-
larity, we tested whether they may share overlapping func-
tions. Wild-type, single midIA, and mid2A mutants, and
midl Amid2A double mutants were assayed for growth and
cell integrity at multiple temperatures on agar plates con-

taining phloxin, a red dye that stains dead cells. We also as-
sayed for septum placement defects in cells grown in liquid
cultures. In these assays, the phenotype of the midlAmid2A
double mutant was not more severe than that of either single
mutant (Fig. 8, A and B). Mid1p-GFP was properly local-
ized as a medial broad band of dots at the cell surface and in
a tight ring in mid2A mutant cells (Fig. 8 C) (Paoletti and
Chang, 2000). Mid2p-GFP was propetly localized in single
or double rings in the midIA mutant (Fig. 8 D). Thus, to-
gether our darta suggest that Mid1p and Mid2p do not have
overlapping functions and act in different aspects of cytoki-
nesis.

Discussion

Mid2p stabilizes the septin ring

Here, we identified Mid2p, a protein necessary for efficient
cell—cell separation during cytokinesis in fission yeast. Com-
mon phenotypes suggest that Mid2p and septins share a
common function. Mid2p localizes to the cell division site
after septins have been deposited and requires septins for lo-
calization. Although Mid2p is not required for the initial
formation of the septin ring, it functions to maintain the in-
tegrity and stability of the septin rings during contractile
ring closure. The PH domain of Mid2p, which may func-
tion as a membrane anchor or as a septin interaction do-
main, is required for the function and localization of the
protein. These observations suggest that Mid2p functions
primarily to organize septin rings at the plasma membrane
and is required for proper septin function in cell—cell separa-
tion.

Septins are filament-forming proteins. In vitro, septins as-
semble into 10-nm filaments (Field et al., 1996; Frazier et
al., 1998; Mendoza et al., 2002). In budding yeast, septins
appear to be components of the bud neck filaments, al-
though in other organisms analogous septin filaments in
vivo have not yet been reported. Little is known about how
septin filaments may be regulated by other protein factors,
such as factors that promote polymerization, depolymeriza-
tion, or filament bundling, or affect GTP hydrolysis or ex-
change. Here we show that in contrast to the contractile ring
proteins actin, cdc4p, cdc8p, and myo2p which exchange
rapidly (mean t;, < 1 min) (Pelham and Chang, 2002;
Wong et al., 2002), septins form relatively stable structures
in the ring (mean t;, = 7 min). We speculate that Mid2p
promotes the assembly and/or the stabilization of septin fila-
ments. The abnormally rapid dynamics of septins in mid2A
cells may arise from unassembled septin proteins that ex-
change with binding sites at the membrane of the cleavage
furrow. Expression of a nondegradable form of the Mid2p
protein has been shown to stabilize septin rings so that they
persist into the next cell cycle (K. Gould, personal commu-
nication), suggesting that Mid2p can prevent the disassem-
bly of the septin ring at cell division. To our knowledge, our
study presents one of the first in vivo analyses of septin dy-
namics using FRAP identifying a protein required specifi-
cally for septin stability.

Although other septin-interacting proteins have not been
well characterized yet in S. pombe, a number of proteins
have been identified that regulate septins in budding yeast.
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Figure 8.  midT and mid2 do not show
genetic interactions. (A) Wild-type,
mid1A, mid2A, and mid1Amid2A strains
were assayed for growth rates and cellular
integrity at 30 and 36°C by growth on
agar plates containing phloxin, a dye
that stains dead cells. Three independent
mid1Amid2A strains are represented in
the bottom three streaks of each plate.
(B) Cells grown in liquid cultures were
stained with Calcofluor to visualize
septa. (C) Localization of Mid1p-GFP in
mid2A cells and localization of Mid2p-
GFP in mid1A cells.

mid1A mid2p-GFP

The GTPase Cdc42p is likely to be a central regulator of
septin ring assembly in budding yeast (Gladfelter et al.,
2002). Mutants of budding yeast Gin4p, a protein kinase
that may directly interact with septins, have septin “bars”
rather than rings (Longtine et al., 1998, 2000). e/mI and
specific cdc42 mutant alleles display misplacement of septin
rings (Bouquin et al., 2000; Gladfelter et al., 2002). Septins
have been found to be conjugated with the ubiquitin-
related protein SUMO and interact with components of
the sumoylation machinery, such as the E3-like factor Sizlp
(Johnson and Blobel, 1999; Takahashi et al., 1999; John-
son and Gupta, 2001).

Mid2p and septin function in S. pombe

Septins have been implicated in cytokinesis in several organ-
isms. In budding yeast, septins are essential for cytokinesis
and for other important functions such as regulation of the
cell cycle and cell shape (Gladfelter et al., 2001). Surprisingly,
septin mutants in fission yeast have a much milder phenotype
in which many aspects of cytokinesis such as actomyosin ring
assembly and contraction and septation are apparently nor-
mal, and only the final step in cell—cell separation is delayed
for about a generation time (2-3 h). This step in cytokinesis
may involve the deposition or activation of factors at the sep-
tum that degrade the primary septum, allowing for cell sepa-
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ration. What may be the functions of septins in cytokinesis in
S. pombe? Other mutants with a similar cell-cell separation
phenotype include mutants in the exocyst complex (sec6, sec8,
sec10, and ex070), calcineurin (ppbl), a MAPK (pmkl), a
MAPK phosphatase (pmpl), and a forkhead transcription
factor (sepI) (Sipiczki et al., 1993; Yoshida et al., 1994; Toda
et al., 1996; Ribar et al., 1997; Sugiura et al., 1998; Wang et
al., 2002). Possible effects of these gene products on Mid2p
and septins remain to be determined. In other organisms,
septins interact with the exocytosis machinery, such as exo-
cyst components or syntaxins (Hsu et al., 1998; Beites et al.,
1999; Kartmann and Roth, 2001). Thus, septins and Mid2p
may be required for proper exocytosis of a septum digestive
enzyme to the septum.

Septins are still able to localize normally to medial plasma
membrane even in the absence of Mid2p. This distribution
suggests that there are septin-binding sites in this region. Fil-
ipin staining shows that an oxysterol-rich membrane do-
main is established in a medial band starting in anaphase,
and then in the region of the cleavage furrow during cytoki-
nesis (unpublished data). Formation of this membrane do-
main is independent of septins and Mid2p (unpublished
data). Since septins may bind directly to phospholipids
(Zhang et al., 1999), they may initally recognize and bind
to this membrane domain before cleavage. One function of
Mid2p may be to stabilize septins so that they stay in rings at
the cell surface and do not associate with the rest of the
membrane domain in the interior of the cleavage furrow.

New family of cytokinesis proteins

Mid2p has significant similarity to several other proteins in-
volved in cytokinesis and/or septin association: S. pombe
Midlp, S. cerevisiae Bud4, and C. albicans Intl (Gale et al.,
1996; Sanders and Herskowitz, 1996; Sohrmann et al.,
1996). These proteins begin to define a new family of cyto-
kinesis proteins. All share a very COOH-terminal PH do-
main and have additional areas of similarity at the COOH
terminus. Mid1p is a protein involved in the positioning of
the actomyosin contractile ring, since midl mutants form
rings in random locations at the cell surface. No association
between Midlp and septins have been noted. Genetic tests
did not reveal any overlapping functions between Midlp
and Mid2p. Rather, Mid1p and Mid2p may function inde-
pendently at two different parts of the cell cycle: Mid1p acts
in early mitosis to organize and position the actomyosin
ring, whereas Mid2p acts in late mitosis to organize the sep-
tin rings.

Bud4p and Intlp influence the placement of the cell divi-
sion site and also appear to associate with the septins. Bud-
ding yeast Bud4p is located at the septin rings at the bud
neck and functions in positioning the future bud site at a site
adjacent to the septin ring from the previous cell cycle
(Sanders and Herskowitz, 1996). Although septin rings ap-
pear normal in bud4 mutants, Bud4p does not appear to be
involved in organizing the septin structure but may use sep-
tins as a means for localization. C. albicans Intlp is required
for hyphal formation, adherence, and pathogenesis (Gale et
al., 1998). Overexpression of Intlp in budding yeast causes
reorganization of the septins into spiral-like structures, and
Intlp coimmunoprecipitates with budding yeast septins

(Gale etal., 2001). In Candida, Intlp colocalizes with a sep-
tin ring distal to the germ tube neck and is required for bud
site selection.

The functional metazoan homologues of these proteins
may be anillins, contractile ring proteins identified in flies,
Xenopus, and human (Field and Alberts, 1995; Oegema et
al.,, 2000). Anillins also have a COOH-terminal PH do-
main, but the amino acid similarity outside of the PH do-
main to the fungal proteins is low. Recent in vivo and in
vitro results show that anillin may function directly to link
septins to actin bundles (Oegema et al., 2000; Kinoshita et
al., 2002). The COOH-terminal region of anillin that en-
compasses the PH domain is required for this septin recruit-
ment activity and for its localization to the cleavage furrow.
Thus, the COOH-terminal portion of all these proteins, in-
cluding Mid2p, may share a common function in septin in-
teraction. Since anillin associates with both actin and sep-
tins, its function may encompass both the roles of Midlp
and Mid2p. Additional proteins related to anillin are also
encoded in the genomes of Drosophila, Caenorhabditis ele-
gans, human, and mice, suggesting the possibility that these
proteins have diverse or additional molecular functions
(Oegema et al., 2000). Therefore, these fungal and meta-
zoan proteins may serve conserved functions in cytokinesis
as important organizers of cleavage furrow components.

Materials and methods

Yeast genetic, biochemical, and cell biological methods

S. pombe strains used in this study are listed in Table I. Standard methods
for S. pombe media, genetic manipulations, immunofluorescence, and
staining are described at http://www.bio.uva.nl/pombe/handbook/. Con-
struction of mid2A, mid2p-GFP, mid2p-YFP, mid2p-HA, spn4-CFP, and
cdc12-CFP strains was performed using a PCR-based approach using
kanMX-based templates and 100-mer oligos with 80-bp homologies to the
targeted gene (Bahler et al., 1998b; Glynn et al., 2001) (Yeast Resource
Center). spn4A::kanMX and spn4-GFP strains were gifts from J. Pringle
(University of North Carolina, Chapell Hill, NC) and were constructed us-
ing a similar approach. For generation of mid24, initial deletions were
made in diploid strains, and then heterozygous diploids were sporulated to
produce viable mid2A haploid spores. Subsequent deletions and insertions
were performed in haploid strains. Deletion and insertion strains were
confirmed by PCR to check proper insertion at the locus.

Microscopy

Microscopy was performed using wide field or spinning disk confocal light
microscopy (Pelham and Chang, 2002) using Open Lab 2 (Improvision)
software for image acquisition and analysis. For three-dimensional confo-
cal images of contractile or septin rings, cells were grown in log phase cul-
tures (diluted from overnight cultures 3 h before imaging), pelleted, placed
onto agarose pads (Tran et al., 2001), and imaged in 17 image planes 0.5
wm apart every 4 min. Images were reconstructed in three dimensions us-
ing a three-dimensional module with linear interpolation for addition of 1
plane between each slice. FRAP studies were performed on a Zeiss
LSM510 two-photon scanning confocal and analyzed using Zeiss LSM
software (Carl Zeiss Microlmaging, Inc.) as described (Pelham and Chang,
2002). Fluorescence intensities were normalized to a control unbleached
ring in the same field to account for photobleaching from image acquisi-
tion after the initial photobleach. Alexa phalloidin staining was performed
as described (Pelham and Chang, 2001). Spn4p immunofluorescence was
performed on methanol-fixed cells with anti-Spn4p antibody (a gift from J.
Pringle, University of North Carolina, Chapel Hill, NC) as described in
http://www.bio.uva.nl/pombe/handbook/.

Western analysis

Western blotting was performed with yeast extracts prepared using a mor-
tar and pestle method (Glynn et al., 2001). Anti-GFP antibodies (from J.
Kahana and P. Silver, Harvard Medical School, Boston, MA, or K. Sawin,
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Table I. S. pombe strains used in this study
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Strain Genotype Source

FC881 h™ mid2A::kanMX6 ade6 leu1-32 ura4-D18 This work
FC937 h™ ade6 leul-32 ura4-D18 This work
FC866 h~ spn4-GFP-kanMX6 J. Pringle
FC867 h™ spn4A::kanMX6 leu1-32 ura4-D18 J. Pringle
FC940 h™ mid2A::kanMX6 spn4-GFP-kanMX6 This work
FC941 h™ mid2-GFP-kanMX6 ade6 leul-32 ura4-D18 This work
FC880 h™ mid2-YFP-kanMX6 ade6 leul-32 ura4-D18 This work
FC882 h* mid2-YFP-kanMX6 spn4-CFP-kanMX leu-32 This work
FC942 h™ mid2-GFP-kanMX6 spn4A::kanMX6 ade6 ura4-D18 This work
FC943 h™ mid2 PHA-YFP-kanMX6 ade6 leu1-32 ura4-D18 This work
FC944 h™ mid2 PHA-kanMX6 ade6 leu1-32 ura4-D18 This work
FC936 h™ mid2 PHA-HA-kanMX6 ade6 leu1-32 ura4-D18 This work
FC945 h™ mid2 PHA-HA-kanMX6 spn4A::kanMX6 ade6 leul-32 ura4-D18 This work

University of Edinburgh, Edinburgh, UK) were used at a 1:1,000 dilution.
Anti-HA antibodies (Covance) were used at a 1:1,000 dilution.
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